Combining graph embedding and sparse regression with structure low-rank representation for semi-supervised learning

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining graph embedding and sparse regression with structure low-rank representation for semi-supervised learning

Introduction Complex adaptive systems (CAS) research area is trying to establish a comprehensive and general understanding of the complex world around us (Niazi and Hussain 2013). Complex systems typically involve the generation of high dimensional data and rely on effective analysis and management of such high-dimensional data. High dimensional data exists in a wide variety of real application...

متن کامل

Structure Preserving Low-Rank Representation for Semi-supervised Face Recognition

Constructing an informative and discriminative graph plays an important role in the graph based semi-supervised learning methods. Among these graph construction methods, low-rank representation based graph, which calculates the edge weights of both labeled and unlabeled samples as the low-rank representation (LRR) coefficients, has shown excellent performance in semi-supervised learning. In thi...

متن کامل

Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning

Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labele...

متن کامل

Sparse semi-supervised learning on low-rank kernel

Advances of modern science and engineering lead to unprecedented amount of data for information processing. Of particular interest is the semi-supervised learning, where very few training samples are available among large volumes of unlabeled data. Graph-based algorithms using Laplacian regularization have achieved state-of-the-art performance, but can induce huge memory and computational costs...

متن کامل

Combining Graph Laplacians for Semi-Supervised Learning

A foundational problem in semi-supervised learning is the construction of a graph underlying the data. We propose to use a method which optimally combines a number of differently constructed graphs. For each of these graphs we associate a basic graph kernel. We then compute an optimal combined kernel. This kernel solves an extended regularization problem which requires a joint minimization over...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complex Adaptive Systems Modeling

سال: 2016

ISSN: 2194-3206

DOI: 10.1186/s40294-016-0034-7